Linear algebra -Midterm 2

1. Let \mathcal{P}_{2} be the space of polynomials of degree at most 2 , and define the linear transformation

$$
\begin{gathered}
T: \mathcal{P}_{2} \rightarrow \mathbb{R}^{2} \\
T(p(x))=\left[\begin{array}{l}
p(0) \\
p(1)
\end{array}\right]
\end{gathered}
$$

For example $T\left(x^{2}+1\right)=\left[\begin{array}{l}1 \\ 2\end{array}\right]$.
(a) Using the basis $\left\{1, x, x^{2}\right\}$ for \mathcal{P}_{2}, and the standard basis for \mathbb{R}^{2}, find the matrix representation of T.
(b) Find a basis for the kernel of T, writing your answer as polynomials.

Solution.
(a) The matrix representation is $A=\left[\begin{array}{lll}1 & 0 & 0 \\ 1 & 1 & 1\end{array}\right]$, since $T(1)=\left[\begin{array}{l}1 \\ 1\end{array}\right], T(x)=\left[\begin{array}{l}0 \\ 1\end{array}\right], T\left(x^{2}\right)=\left[\begin{array}{l}0 \\ 1\end{array}\right]$.
(b) The nullspace of A is spanned by $\left[\begin{array}{c}0 \\ 1 \\ -1\end{array}\right]$, which corresponds to the polynomial $x-x^{2}$.
2.
(a) Find the coordinate vector of the element $1+3 x-6 x^{2}$ in \mathcal{P}_{2}, relative to the basis

$$
B=\left\{1-x^{2}, x-x^{2}, 2-x+x^{2}\right\} .
$$

(b) In the space \mathcal{P}_{3} of polynomials of degree at most 3 , are the vectors $\left\{1+2 x^{3}, 2+x-3 x^{2},-x+2 x^{2}-x^{3}\right\}$ linearly independent?
(c) Do the vectors in part (b) form a basis for \mathcal{P}_{3} ?

Solution.

(a) The coordinate vector is $\left[\begin{array}{c}3 \\ 2 \\ -1\end{array}\right]$. To see this, solve the system

$$
x_{1}\left[\begin{array}{c}
1 \\
0 \\
-1
\end{array}\right]+x_{2}\left[\begin{array}{c}
0 \\
1 \\
-1
\end{array}\right]+x_{3}\left[\begin{array}{c}
2 \\
-1 \\
1
\end{array}\right]=\left[\begin{array}{c}
1 \\
3 \\
-6
\end{array}\right]
$$

using row reduction.
(b) Yes, they are. Row reduce the matrix

$$
\left[\begin{array}{ccc}
1 & 2 & 0 \\
0 & 1 & -1 \\
0 & -3 & 2 \\
2 & 0 & -1
\end{array}\right]
$$

to see this. You should get a pivot in each column.
(c) No, they do not form a basis because they do not span \mathcal{P}_{3}. (You would need 4 vectors to span \mathcal{P}_{3}.)
3. Let $M_{2 \times 2}$ be the vector space of 2×2 matrices with the usual operations of addition and scalar multiplication. Define the linear transformation

$$
\begin{gathered}
T: M_{2 \times 2} \rightarrow M_{2 \times 2} \\
T(A)=A+A^{T},
\end{gathered}
$$

where A^{T} is the transpose of A.
(a) Find the matrix representation of T relative to the basis $\left\{\left[\begin{array}{ll}1 & 0 \\ 0 & 0\end{array}\right],\left[\begin{array}{ll}0 & 1 \\ 0 & 0\end{array}\right],\left[\begin{array}{ll}0 & 0 \\ 1 & 0\end{array}\right],\left[\begin{array}{ll}0 & 0 \\ 0 & 1\end{array}\right]\right\}$.
(b) Find the dimension of the kernel of T.

Solution.
(a) The matrix representation is $\left[\begin{array}{llll}2 & 0 & 0 & 0 \\ 0 & 1 & 1 & 0 \\ 0 & 1 & 1 & 0 \\ 0 & 0 & 0 & 2\end{array}\right]$.
(b) After row reducing the matrix from part (a) there is one free variable. So the dimension of the kernel is 1.
4.
(a) Compute the determinant

$$
\operatorname{det}\left[\begin{array}{cccc}
2 & 5 & -3 & -1 \\
3 & 0 & 1 & -3 \\
-6 & 0 & -4 & 9 \\
4 & 10 & -4 & -1
\end{array}\right]
$$

(b) Let A, B be $n \times n$ matrices, such that B is invertible. Is it true that

$$
\operatorname{det}\left(B^{-1} A B\right)=\operatorname{det}(A) ?
$$

Justify your answer!

Solution.
(a) The determinant is 120 .
(b) It is true, since

$$
\operatorname{det}\left(B^{-1} A B\right)=\operatorname{det}\left(B^{-1}\right) \operatorname{det}(A) \operatorname{det}(B)=\operatorname{det}\left(B^{-1}\right) \operatorname{det}(B) \operatorname{det}(A)=\operatorname{det}(I) \operatorname{det}(A)=\operatorname{det}(A) .
$$

