Linear algebra -Midterm 2

1. Let \mathcal{P}_2 be the space of polynomials of degree at most 2, and define the linear transformation

$$T: \mathcal{P}_2 \to \mathbb{R}^2$$
$$T(p(x)) = \begin{bmatrix} p(0)\\ p(1) \end{bmatrix}$$

For example $T(x^2 + 1) = \begin{bmatrix} 1 \\ 2 \end{bmatrix}$.

- (a) Using the basis $\{1, x, x^2\}$ for \mathcal{P}_2 , and the standard basis for \mathbb{R}^2 , find the matrix representation of T.
- (b) Find a basis for the kernel of T, writing your answer as polynomials.

Solution.

(a) The matrix representation is
$$A = \begin{bmatrix} 1 & 0 & 0 \\ 1 & 1 & 1 \end{bmatrix}$$
, since $T(1) = \begin{bmatrix} 1 \\ 1 \end{bmatrix}$, $T(x) = \begin{bmatrix} 0 \\ 1 \end{bmatrix}$, $T(x^2) = \begin{bmatrix} 0 \\ 1 \end{bmatrix}$
(b) The nullspace of A is spanned by $\begin{bmatrix} 0 \\ 1 \\ -1 \end{bmatrix}$, which corresponds to the polynomial $x - x^2$.

2.

(a) Find the coordinate vector of the element $1 + 3x - 6x^2$ in \mathcal{P}_2 , relative to the basis

$$B = \{1 - x^2, x - x^2, 2 - x + x^2\}.$$

- (b) In the space \mathcal{P}_3 of polynomials of degree at most 3, are the vectors $\{1 + 2x^3, 2 + x 3x^2, -x + 2x^2 x^3\}$ linearly independent?
- (c) Do the vectors in part (b) form a basis for \mathcal{P}_3 ?

Solution.

(a) The coordinate vector is
$$\begin{bmatrix} 3\\ 2\\ -1 \end{bmatrix}$$
. To see this, solve the system

$$x_1 \begin{bmatrix} 1\\0\\-1 \end{bmatrix} + x_2 \begin{bmatrix} 0\\1\\-1 \end{bmatrix} + x_3 \begin{bmatrix} 2\\-1\\1 \end{bmatrix} = \begin{bmatrix} 1\\3\\-6 \end{bmatrix}$$

using row reduction.

(b) Yes, they are. Row reduce the matrix

$$\begin{bmatrix} 1 & 2 & 0 \\ 0 & 1 & -1 \\ 0 & -3 & 2 \\ 2 & 0 & -1 \end{bmatrix}$$

to see this. You should get a pivot in each column.

(c) No, they do not form a basis because they do not span \mathcal{P}_3 . (You would need 4 vectors to span \mathcal{P}_3 .)

3. Let $M_{2\times 2}$ be the vector space of 2×2 matrices with the usual operations of addition and scalar multiplication. Define the linear transformation

$$T: M_{2 \times 2} \to M_{2 \times 2}$$
$$T(A) = A + A^T,$$

where A^T is the transpose of A.

- (a) Find the matrix representation of T relative to the basis $\left\{ \begin{bmatrix} 1 & 0 \\ 0 & 0 \end{bmatrix}, \begin{bmatrix} 0 & 1 \\ 0 & 0 \end{bmatrix}, \begin{bmatrix} 0 & 0 \\ 1 & 0 \end{bmatrix}, \begin{bmatrix} 0 & 0 \\ 0 & 1 \end{bmatrix} \right\}$.
- (b) Find the dimension of the kernel of T.

Solution.

(a) The matrix representation is	[2	0	0	0].
	0	1	1	0	
	0	1	1	0	
	0	0	0	2	

(b) After row reducing the matrix from part (a) there is one free variable. So the dimension of the kernel is 1.

4.

(a) Compute the determinant

$$\det \begin{bmatrix} 2 & 5 & -3 & -1 \\ 3 & 0 & 1 & -3 \\ -6 & 0 & -4 & 9 \\ 4 & 10 & -4 & -1 \end{bmatrix}.$$

(b) Let A, B be $n \times n$ matrices, such that B is invertible. Is it true that

$$\det(B^{-1}AB) = \det(A)?$$

Justify your answer!

Solution.

- (a) The determinant is 120.
- (b) It is true, since

$$\det(B^{-1}AB) = \det(B^{-1})\det(A)\det(B) = \det(B^{-1})\det(B)\det(A) = \det(I)\det(A) = \det(A)$$